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Abstract

Without solving the Schrödinger equation, exact and general expressions of
the reflection and transmission probabilities for a quantum particle through an
arbitrary potential barrier are presented by using the analytical transfer matrix
method. It is seen that in addition to the parameters of the ambience and both
the start and the final point of the barrier, the unique dependence on the formulae
is the total phase shift accumulated by the mainwaves and the subwaves.

PACS numbers: 04.20.Jb, 73.40.Gk

1. Introduction

Quantum tunneling which is associated with a quantum particle through a potential barrier is
a subject of profound importance in many areas of physics [1–5]. One of the reasons for an
increased interest in the problem is that recent advances in molecular-beam-epitaxy (MBE)
technology have opened up new possibilities of building next-generation nanometer-scale
electronic devices [6]. On the other hand, a better fundamental understanding of quantum
transport theory becomes an urgent challenge. The most straightforward method to study
the quantum tunneling is to solve the Schrödinger equation, such as solving numerically the
time-dependent Schrödinger equation by the use of the numerical techniques [7, 8] and the
analytical approximations [9–12]. However, since exact solutions of the Schrödinger equation
are not possible except for a few of the simplest potentials, theoretical description of the
tunneling problems, even in its basic one-dimensional form, turns out to be rather difficult.
There has been a large amount of literature on the subject, in which, either an approximate or a
numerical approach is used. No doubt that using numerical methods one gets the solution to the
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desired accuracy, but a considerable deal of physical insight is lost in the process. Among the
approximate methods, the most famous method is certainly the semiclassical WKB approach
[13]. In addition to the quantum mechanics, it has been widely used in various branches
of physics, such as, nuclear physics, solid-state physics and, in particular, atomic physics.
However, the WKB approximation is essentially restricted to slowly varying potential, many
physically interesting situations do not fulfill the conditions of the semiclassical limit. For
example, the semiclassical approach yields an oversimplified expression for the transmission
amplitude through a potential barrier [14]. For these reasons, many features of quantum
tunneling are found lie beyond the reach of the WKB approximations. Therefore, it is apparent
that the conventional WKB method needs important modifications. Since two decade ago,
various sophisticated techniques have been developed to improve the WKB method, such as the
path-integral method [15], Airy function method [3], instanton method [16] and postclassical
approximation [17]. Although these methods can give more accurate results than that of
the WKB method, but different approaches often results in different final expressions with
different valid conditions for the tunneling transmission amplitude, there is still no a generally
accepted method available for calculating the quantum tunneling. In this paper, we present
a general analysis of a quantum particle through an arbitrary potential barrier based on the
analytical transfer matrix (ATM) method [18–20]. Although transfer matrix technique has
been used to describe the transport processes and the scattering of quantum wires [21–25],
however it in general acts as a numerical method but does not act as an analytical method. In
our analysis, without solving the Schrödinger equation, exact and general expressions for the
transmission and reflection probabilities are presented in a very explicit way. Different from the
WKB method and its refined versions, subwaves, which inherently exist in an inhomogeneous
system and is always neglected in the semiclassical approaches, are taken into account, results
in a total phase shift of a quantum particle across an arbitrary potential barrier.

2. Theory

We start with the effective-mass approximation, time-independent Schrödinger equation,[
− d

dx

h̄2

2m(x)

d

dx
+ V (x)

]
ψ(x) = Eψ(x), (1)

where m(x) represents position-dependent effective mass, and h̄ = h/2π , h is Planck’s
constant, V (x) and ψ(x) are the potential energy and the wavefunction, respectively, E

represents particle energy. As shown in figure 1, consider an arbitrary potential barrier V (x) is
situated between x = 0 and x = s. V0 and m0 are the potential energy and the effective mass at
x � 0, respectively; Vs and ms represent the potential energy and the effective mass at x � s,
respectively. We then divide the region (0, s) into l segments with homogeneous potential
energy Vj = V (xj−1 + dj/2) and effective mass mj = m(xj−1 + dj/2) and the thickness
dj (j = 1, 2, . . . , l). According to the analytical transfer matrix (ATM) method, the transfer
matrix corresponding to the j th segment can be written as

M(dj ) =
[

cos(κjdj ) −mj

κj
sin(κjdj )

κj

mj
sin(κjdj ) cos(κjdj )

]
(j = 1, 2, . . . , l), (2)

where κj = √
2mj(E − Vj )/h̄.

We assume that the wavefunctions at x � 0 and x � s can be described as

ψ(x) =
{
A0 exp(iκ0x) + B0 exp(−iκ0x) (x � 0)

As exp(iκsx) (x � s),
(3)

where κ0 = √
2m0(E − V0)/h̄ and κs = √

2ms(E − Vs)/h̄.
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Figure 1. Arbitrary potential barrier.

On applying the boundary conditions at x = 0 and x = s, we have[
ψ(0)

1
m0

ψ ′(0)

]
=

l∏
j=1

Mj(dj )

[
ψ(s)

1
ms

ψ ′(s)

]
, (4)

Equation (4) can be changed into the following form:[
− 1

m0

ψ ′(0)

ψ(0)
1

] l∏
j=1

Mj(dj )

[
1

1
ms

ψ ′(s)
ψ(s)

]
= 0. (5)

We set

ψ ′(s)/ψ(s) = −qs, (6)

since s = xl (dj → 0), the use of equation (3) yields

qs = −iκs. (7)

Thus, equation (5) becomes[
− iκ0

m0

A0 − B0

A0 + B0
1

] l∏
j=1

Mj(dj )

[
1

− qs

ms

]
= 0. (8)

By using the similar procedures in [11], we have

− iκ0

m0

A0 − B0

A0 + B0
= q1

m1
, (9)

where q1 can be obtained from the recursion formula

qj = κj tan

[
tan−1

(
mj

mj+1

qj+1

qj

)
− κjdj

]
(j = 1, 2, . . . , l), (10)

and ql+1 = qs . In order to obtain an expression with clear physical insight, we set

φj = tan−1

(
mj

mj

qj

κj

)
, (11)
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which, by use of equation (10), becomes

φj = nπ + tan−1

(
mj

mj+1

qj+1

κj

)
− κjdj

= nπ + tan−1

(
mj

mj+1

κj+1

κj

tan φj+1

)
− κjdj ,

(n = 0, 1, 2, . . . ; j = 1, 2, . . . , l − 1). (12)

Rearranging equation (12) yields

κjdj +

[
φj+1 − tan−1

(
mj

mj+1

κj+1

κj

tan φj+1

)]
= nπ + (φj+1 − φj ). (13)

The solution for j = l is

κldl = lπ + tan−1

(
ml

ms

qs

κl

)
− φl. (14)

Using equations (13) and (14), and summing all the indices j , we have
l∑

j=1

κjdj +
l−1∑
j=1

[
φj+1 − tan−1

(
mj

mj+1

κj+1

κj

tan φj+1

)]
= nπ + tan−1

(
ml

ms

qs

κl

)
− φ1, (15)

which gives

exp(−i2φ1) = exp

{
i2

[
l∑

j=1

κjdj +
l−1∑
j=1

(
φj+1 − tan−1

(
mj

mj+1

κj+1

κj

tan φj+1

))

− tan−1

(
ml

ms

qs

κl

)]}
. (16)

By using a well-known relation between the inverse hyperbolic tangent function and the natural
logarithm [26],

tanh−1 u = 1

2
ln

(
1 + u

1 − u

)
. (17)

According to equations (7) and (17), we have

exp

[
−i2 tan−1

(
ml

ms

qs

κl

)]
= msκl − mlκs

msκl + mlκs

= rls. (18)

Evidently, rls denotes the reflection coefficient at the final point of potential barrier.
For a continuously varying potential energy V (x) and the effective mass m(x), letting
l → ∞ (dj → 0), we obtain

l∑
j=1

κjdj =
∫ s

0
κ(x) dx, (19)

l−1∑
j=1

[
φj+1 − tan−1

(
mj

mj+1

κj+1

κj

tan φj+1

)]
=

∫ s

0

q(κm′ − mκ ′)
m(q2 + κ2)

dx, (20)

where q ′ = dq/dx and m′ = dm/dx.
We have pointed out in our previous works [11] that equations (19) and (20) represent

phase shifts accumulated by the main waves and the subwaves through the potential barrier,
respectively.
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If we define general wavenumber K(x),

K(x) = κ(x) +
q(κm′ + mκ ′)
m(q2 + κ2)

, (21)

which leads to

exp(−i2φ1) = rls exp

[
i2

∫ s

0
K(x) dx

]
. (22)

Since equation (9) can be recast in the form

m1κ0

m0κ1

A0 − B0

A0 + B0
= iq1

κ1
, (23)

we then obtain

r = B0

A0
= r01 + exp(−i2φ1)

1 + r01 exp(−i2φ1)
. (24)

where

r01 = m1κ0 − m0κ1

m1κ0 + m0κ1
. (25)

Which represents the reflection coefficient at the start point of the potential barrier. Combining
equations (22) and (24), we finally obtain the reflection coefficient of a quantum particle
through an arbitrary potential barrier,

r = r01 + rls exp
[
i2

∫ s

0 K(x) dx
]

1 + r01rls exp
[
i2

∫ s

0 K(x) dx
] . (26)

The reflection and the transmission probabilities can easily be expressed as R = rr∗ and
T = 1 − R, respectively.

We would like to emphasize that (i) the general wavenumber K(x) in equation (26)
contains another function q(x) = −ψ ′(x)/ψ(x), which looks like to relate the solution of
the Schrödinger equation. In fact, q(x)can be completely specified by equations (7) and (10)
without solving the Schrödinger equation, therefore, equation (26) is a closed expression.
(ii) The algorithm proposed in this paper is general, it does not involve any approximations.
The expression of the reflection coefficient, which is presented in a simple and explicit form,
is exact. (iii) In addition to the parameters of the ambience, the start point and the final point
of the potential barrier, the unique dependence on the reflection coefficient is the total phase
shift accumulated by the mainwaves and the subwaves. (iv) Different from the semiclassical
approaches, this method is free from the ‘stumbling blocks’ of turning points; moreover, it is
not subject to the requirement of the de Broglie wavelength and the range of the energy E.
As a consequence, this expression may extensively be applied to many basic quantum
phenomena, such as quantum tunneling, quantum reflection, the time related to a tunneling
particle and the resonant tunneling.

3. Special case

In order to illustrate the reliability of our results, test calculations have been performed with a
potential profile

V (x) = V0

cosh2(αx)
(V0 > 0), (27)
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Figure 2. Transmission probability as a function of the incident particle energy for the potential
(27) with V0 = 2.

for which the exact expression for transmission probability is known by Landau and Lifshitz
[7] and can be written as

T = sinh2
(

πκ
α

)
sinh2

(
πκ
α

)
+ cosh2

(
π
2

√
1 − 8mV0

h̄2α2

) . (28)

The calculation results of equation (28) and the proposed expression are plotted in figure 2. It
is demonstrated that the numerical results for the ATM method and equation (28) are exactly
same for arbitrary settled accuracy, as long as the segments of the potential are divided finer
enough in the proposed scheme. The validity of the formula is also well examined in quantum
tunneling and resonant tunneling for several typical potential barriers.

4. Conclusion

In conclusion, the analytical transfer matrix (ATM) method is used to treat one-dimensional
quantum problems. Owing to the consideration of the phase shift contributed by the
subwaves, which inherently exist in the inhomogeneous potential and is always neglected in
the semiclassical approaches, exact and general expressions of the reflection and transmission
probabilities for a quantum particle through an arbitrary potential barrier are presented in a
closed and clear form.
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